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Abstract: In some population the AIDS/HIV incidence rate 2 0 {0, 4} is altered in the middie of 2 data
collection period due to preventive treatments imposed by the health service agencies. The intervened Poisson
(1P} model is appropriate to analyze data of this type. However, the classical approach leading to the maximum
likelihood [ML], moment [M} or minitmum variance unbiased [MVU] estimator of 2 is mathematically
formidable and practically inconvenient as far as sequentially updating the estimate when new data arrive.
Previous subjective Bayesian work has been done to overcome these issues. Hence, there is a need fo devise a
more practical Empirical Bayesian technique to estimate 2, and it is done in this article. The results are
lustrated using a data on AIDS/HIV incidence data from: a slaie health department.  Advaniages in the
Bayesian Intervened approach are cited.
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1. BACKGROUND AND MOTIVATION

because a zero event is unlikely,
As in Shanmugam ¢t al. [1997] we consider a

random sample Oy, = (0, O,,...,0,) on the number In addition {o the reality that © = 0 is not cbservable,
of AIDS/HIV cases that have occurred in nd | units suppose a medical intervention of some sort takes
or locations. An underlying model for O, is to be place. That is, due to the seriousness of the
chosen depending con how the data collection epidemic, the health officials may impose various
apparatus is set up, Had a random sample of n units preventive treatments such as educating the public
been chosen a priori, then the model for O, is about the ways of avoiding AIDS/HIV or enacting
Poisson (P): quarantine on the inflicted persons even in the

middle of a data collection period, and these actions
p(x# 2,P) =Pr{(O = x# 2, P) = ¢22%xl cause the incidence rate 1o be different from the time
x=01.2. 250 (h of such medical imtervention. To study a health

chance mechanism of this type, Shanmugam [1985]
introduced a model, and named it intervened Poisson

If the data are collected from a list of units which -
{IP) model. That is:

are reported to have at least one case of AIDS/HIV
incidence, then the model for O, is positive Poisson

{PP): p(x*2IP) =P [0 =x#2,IP] =

p(x# 2.PP) = Pr(O = x# 2, PP) = (&2 - 1) 2%, [ MR - e L+ A) - AT 3)

x=12.;2>0 (2)
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where x = 12,02 >0, 0 # p <4 is called the
intervention parameter.

The PP model stated in {2) is obtained as a special
case of (3) by substituting A= 0. What does this
special case imply? A zero value for A is indicative
of completely successful preventive treatments
[Shanmugam, 1985} , whemas A= [ is 10 be
interpreted as a siatus quo in the incidence raie even
after the preventive treatments are applied.  Sireit
[1987] proposed a locally most powerful statistic to
test a hypothesis M, 0 A4 = [ versus By @ A <L
Recently, Shanmugam [1992] derived a oV} test
statistic as an alternate to Streit's siatistic.

The discussions in this article pertain to estimating
the incidence tate, 2 as this estimate is a basis for
health officials in making future decisions on
whether to further impose a stronger preventive
action.

Unfortunately, the estimation of 2 is a formidable
task [Shanmuogam, 1985] as it involves solving a
nonfinear estimating function :

O=[p+l-(f -1]=X

whether the ML or M method is applied, where
x=TFx/n denotes the sample average. On the

contrary, the MVU method yields a simple
CNPICSSIon; {0=nS{n-1,n,-npy/S{n.0,-0p) for
estimating 2, but its difficulty lies in computing the
generalized Stirling number 5(-), as the munber is
known to be extremely large even for moderats
values of its arguments (see Shammugum [1985] for
details on the generalized Stirling numbers).

Furthermore in the discussions leading to #or 0 the
incidence rate is assumed to be stable and fixed
although unknown. In an enviromment of
AIDS/HIY epidemic, this assumption is irivially
unreal.  Rather, the incidence rate 2 should be
treated as a random variable, although it is still fixed
over the design period.  This notion is Bavesian
See Zellner [1988] for the importance of Bayes
concepts in many aspects of life,

The aim of this article is to charf cut a Bayesian
technique fo estimate 2. Advantages of the Bayesian
approach in estimating 2 arc pointed out.  Using the
data on AIDS/HIYV incidence in a particular state,
the resulis are iustrated.
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2. PRIOR AND POSTERIOR
KNOWLEDGE OF 0

It is needless fo state that in a Bayesian framework
the prior distribution which quantifies  the
knowledge gained thus far about the parameter plays
a crucial role. Different ideas have been entertained
by statisticians to reach a consensus in making up 2
prior distribution (For details sce Zellner 1971 .
Among others, the three major guiding criteria in
making up the prior have been Data Dominance
(DD, Invariance {1} and Conjugacy [CL

Under DD criterion, the data likelihood Wx,# 2
ought to be dominant over the prior knowledge, and
it is captured by the Jeffreys’ [19611 non
informational [vague] prior density:

2=+ (M2 In | (x (o ¥ 27 (4)

Where 1o, E, 8%, and | (x,0/2) denote respectively
the prior sample size, the conditional expectation for
a fixed 2, the second order derivative with respect 2,
and the conditional likelihood function (for a fixed
2}. For the IP model stated in (3), note that

P=1(x, |8,1P)= ie“"”fﬂ—ﬁ) ol (5)
[(i-p) = pTYlogneXa /1] 2/
Using
(5) in (&) we oblain, after simplifications, the
Jeffrey’s non informational prior density,

1

JOy=] 8ln,850 2 (6)
where g = 2ip + 1 + (¢° - 1y'] denotes the population
mean. Under the conjugate criterion, both the prior
and the conditional data likelihood [1x.)[2) are to be
"compatible” with each other. By compatible, we
mean that under such a prior, the posterior will also
be a member of the same distribution family. Sucha
prior is conjugate, and it is also versatile. In other
words, a conjugate prior is a convenient building
block in the Bavesian analysis. The natural choice
for the conjugate prior of 2 in (3) 18

C@) = npe™® (5,85 1 T{n, 1) (73

where Ihe hyper parmmeters np and x, denoie
respectively the prior sample size and mean. The



conjugate prior in {(7) is versatile enongh (o
accommodate both the exponential (with nexp = 1)
ang other skewed patterns of prior knowledge of the
incidence rate 2. Unlike in the cases of vague
priors, the conjugate prior contains the prior sample
mean.

The posterior distribution 5(2xy) of the incidence
rate depends on which prior is employed. If 572
indicates the chosen prior then 8x,) = B (21
(X | (2) 7 M [xpeny] where the normalizer:

Mxg) = | 2O ey | )6

denotes the marginal disiribution of the data x).

With the non informative prior in (4). the exact
cxpression for the posterior density J (2xg) 1s too
cumbersome to be of much use. Hence, we proceed
to find a simpler but useful approximate posterior
distribution as follows. Since (1 - ¢*)™ = 1 for large
n, and the variance:

=[0I

of the IP moedel is approximately equal to (A + 1) 2,
we approximate the posterior density as:

J(O [ 50 = [n(p+ D] 1™ =202 108 gn 1 T 4 1)
&

H we did as in the case of non informational
prior using [1-¢”}"=1 for large n, the approximatc
version of the posterior distribulion becomes:

H | xt) = (D17 o1

0" 10 | T (1 =, ~ 1)
{9y

When the prior sample size n,=0, the posterior
distribution in (9) is anmalogous to the posterior
distribution in (8). Thus we will not consider (%)
further as it is a special case. With the conjugate
prior density o(D) in (7), the exact expression for the
posterior distribution becomes

(B *( Y= PRlitand (lwe“g ) e
0" %] No{ 2,1 %, 1, 2,)
for >0 and p>0, (1)

where the normalizing constant is;
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By considering the posterior density of the form:

(G xqny. IP) = [ p+D+a]™F g riptiaig

9"~ T(nx+ ).
(113

With some o>0 and $>9 in a general situation one
can address both the posterior conjugate

distributions in (10) with & =p,, 8 =n,x and with
o=0, B=n, in (12} below as special cases.

If the underiying model were to be Poisson in (1)
then the posterior distribution of the incidence rate ,
8, would have also been a gamma type of the form:

0 Ly P) = (b ] a0 o

g™ =1 T(nx + )
(12)

with some suitable empiricaliy derived values for
the hyerparameters o>0 and B>0.

3. EMPIRICAL APPROACH TD
ESTIMATION

The cmpirical approach o estimating the
hyperparameters as well as the iniervention
parameter, p, uses the marginal distribution of the
data , Mix] , defined earlier which in tum can be
extended to a posierior predictive distribution of an
observation, v, as follows:

For the Poisson distribution we have:

F(n§+,e+y)( Py )”“‘*ﬁs
1

plylx Py= =
i nx+ By \ato+
I
(ﬁ*ﬁw} . ¥y=0L2,......... (3
RS E ]

Likewise for the IP distribution we have:



-1
o+ 4o
a{p+h+a+l

-
H

Nete that empirically one can use (13) to get initial
estimates of the hyperparamters and use these values
in (14} o derive an estimate of the infervention
parameter, p, and in furn use these values in {11} to
derive a final estimate of the incidence parameter, 8.

@

31;4»[9’
p{yix![}')}: lw{ }

|

T(n;%-ﬁ +1 .
y%f{n?cm@)

p+l+a
n{p+D{n+h+a+l

I

[(nw)(pﬂ) +o
y=01L2.......

,,,,,, p 1
Do+ +er
14)

ALTERNATIVE BAYES ESTIMATION
OF 6

£

in Bayesian analysis the parameter is estimated
such thai it provides a minimura risk  which is
expected lfoss with respect to the posterior
distribution,  Various functional iosses such as
quadratic or non linear are often considered.

{rregardiess of the loss funciion one can proceaed as
follows for estimation of the incidence parameter,

Using the posterior IP distribution we obtain the
modal estimate,

O (IP) = (5~ D /{n(p+ 1) +ar] (15)

for the intervened Poisson data. The modal estimate
of the incidence rate with the vsual Poisson data is

é}?f{P}:[H i }ém(ﬂ?a

o
which yields the relation:

Om(Pr20, (P (16)

implying the incidence rate is over estimated when
the regular Poisson data are used.
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It is well known [Zellmer, 1971} that the Bayes
gstimate | 9() is the posterior mean,

smm 1 under a squared error loss: Lo=

(G- 5()) and the posterior vanance E[(B- 9(}} -

is the Bayes Risk, R(Q). With an intervened
Poisson situation and posterior distribation in (11},
we note that the estimate with respect to squared
error loss is

n;dvﬁ

FOUPY=E0| X )= (hilia

Y
E

with the Bayes Risk

(QIP)=00 UP)inp+D+a . Usinga Poisson

sample the Bayes estimate with respect to a squared
error 10ss is:

0p)= {1 # }Gﬂo (upy
n4o =~

with a Bayes Risk

R(QP=[1+(np/ (o) PRQ.TP).

Notice that the Bayes Risk in estimating the
incidence rate using Poisson data is much more than
the Baves Risk in estimation using the [P data
implving that the incidence rate is overcstimated
using Poisson data in comparison to using the
intervened Poisson data.

5. ILLUSTRATION

in tus section, the results are illustrated using daia
on quarterly incicdence of AIDS/HIV which were
supplied by the AIDS/HIV surveillance office of a
State Department of Public Health.  Owr sample
consists of intravenons drug users. Our data are
assumed {o follow a Poisson model with parameter 2
portraying the incidence rate of AIDS/HIV in the
state. Our dala vields :

X =121 witha sample size n= 29,



The hyper parameters are estimated using the
gamma [conjugate] prior distribution of 2 and the
marginal distributions in {13} and (14) The empirical
estimates of the marginals are V=09 and 3=1.55.
The intervention parameter from (14) is derived as
A=0.1 which indicates nearly successful
intervention. The incidence parameter from the
posterior likelihood in (11) 15 2=1,110.

Table | summarizes the data resulis for the
atternative Bayes estimation of 2 from section 4.0 as
well as the Bayes Risk under the intervened and non
intervened cases.

Table 1. Estimates of the incidence parameter and
the Bayes Risks for the Non Intervened and
{ntervened Poisson Data

Statistic Valuc
QP 1.0882
QP (.9920
QM 00332
RO.IPY 0.0302

6, DISCUSSION

Clearly from the empirical approach one can easily
derive the values of the hyperparameters in the
marginal Poisson case and use these values at least
as initial estimates in the Intervened Poisson case to
derive the estimate of the intervention parameter,
One can then use the posterior likelihood of 2 to
derive an estimate of the incidence parameter, All
the functional forms are well behaved and
convergence occurs in 4 to 5 iterations.

From Table 1 we see the advantage of the use of the
non-zero intervened parameter. The estimates of 2 as
well as the Bayes risks are reduced with the value of
the intervened parameter , A, Our data example is a
further refinement of the study of Shanmugam et al.
{1997] which wused the subjective Bayesian
approach, Here we have the added advantage of the
empirical approach using only the data at hand.

The approach has wide application o many
sttnations requiring analysis of incidence rates
following the Poisson model.
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